IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Kerr/CFT correspondence in the low energy limit of heterotic string theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP08(2009)045
(http://iopscience.iop.org/1126-6708/2009/08/045)

The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 03/04/2010 at 10:21

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/08
http://iopscience.iop.org/1126-6708/2009/08/045/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY IOP PUBLISHING FOR SISSA

RECEIVED: May 26, 2009
ACCEPTED: August 1, 2009
PUBLISHED: August 12, 2009

Kerr/CFT correspondence in the low energy limit of
heterotic string theory

A.M. Ghezelbash

Department of Physics and Engineering Physics, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5E2, Canada

FE-mail: masoud.ghezelbash@usask.ca

ABSTRACT: We investigate the recently proposed Kerr/CFT correspondence in the con-
text of heterotic string theory. The Kerr/CFT correspondence states that the near-horizon
states of an extremal four (or higher) dimensional black hole could be identified with a
certain chiral conformal field theory under the conjecture that the central charges from
the non-gravitational fields vanish. The corresponding Virasoro algebra is generated by a
class of diffeomorphisms which preserves the appropriate boundary conditions on the near-
horizon geometry. To understand the chiral conformal field theory, we consider the class
of extremal Kerr-Sen black hole (that contains three non-gravitational fields) as a class of
solutions in the low energy limit (effective field theory) of heterotic string theory. We derive
the expression of the conserved charges for the extremal Kerr-Sen solutions that contain
dilaton, abelian gauge filed and antisymmetric tensor filed. We confirm and extend the
validity of the conjecture (that the central charges from the non-gravitational fields van-
ish) for theories including antisymmetric tensor fields. We combine the calculated central
charges with the expected form of the temperature using the Cardy formula to obtain the
entropy of the extremal black hole microscopically; in agreement with the macroscopic
Bekenstein-Hawking entropy of the extremal black hole.
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1 Introduction

For a long time, black holes have been an interesting theoretical system to understand the
nature of quantum gravity. Despite a lot of efforts to explain and reproduce the Bekenstein-
hawking entropy, the theory of black hole entropy is not complete.

Recently, in the context of proposed Kerr/CFT correspondence [1], the microscopic en-
tropy of four-dimensional extremal Kerr black hole is calculated by studying the dual chiral
conformal field theory associated with the diffeomorphisms of near-horizon geometry of the
Kerr black hole [2-7]. These diffeomorphisms preserve an appropriate boundary condition
at the infinity. One important feature of this correspondence is that it doesn’t rely on
supersymmetry and string theory unlike the well known AdS/CFT correspondence [8-13].

The Kerr/CFT correspondence has been used in [14] and [15] to find the entropy of
dual CFT for four and higher dimensional Kerr black holes in AdS spacetimes and gauged
supergravity as well as five-dimensional BMPV black holes in [16]. Moreover the correspon-
dence has been used in string theory D1-D5-P and BMPV black holes in [17] and in the
five dimensional Kerr black hole in Gédel universe [18]. The continuous approach to the
extremal Kerr black hole is essential in the proposed correspondence. For example, in the
case of Reissner-Nordstrom black hole the approach to extremality is not continuous [19].
The rotating bubbles, Kerr-Newman black holes in (A)dS spacetimes and rotating NS5
branes have been considered in [20, 21] and [22].

In all these works, the central charge is computed only from the gravitational tensor
field while contributions from other fields like scalar and vector fields are neglected. This
led the authors of [23], to the conjecture that the central charge of extremal black holes
comes only from the gravitational field. In [23], the authors verified the conjecture for a
class of four and five dimensional theories that their actions contain gravity, scalar fields
and a multiple of U(1) vector fields as well as two topological terms (given in terms of vector
fields and corresponding field strengths). Moreover, the conjecture was verified in [21] for
the Kerr-Newmann-(A)dS black hole in the Einstein-Maxwell theory with cosmological



constant. In [21], the authors showed that there is no contribution to the central charge of
dual CFT from U(1) gauge field in the Einstein-Maxwell theory with cosmological constant.

In this article, inspired with the above mentioned works, we consider the class of
extremal Kerr-Sen black hole as a class of solutions in the low energy limit (effective
field theory) of heterotic string theory and show that the antisymmetric tensor field (as
well as the other non-gravitational fields) does not contribute to the central charge of the
dual CFT. Hence we extend the validity domain of the conjecture (proposed in [23]) to
include the non-gravitational antisymmetric tensor fields. The Kerr-Sen black hole is an
exact solution to the four-dimensional effective field theory of heterotic string theory with
gauge field, dilaton field and antisymmetric tensor filed [24]. The Kerr-Sen black hole has
been studied in [25] and [26] in regard to its hidden symmetries, null geodesics, photon
capture and its singularities. Moreover Kerr-Sen black hole has been used to study black
hole lensing in the strong deflection limit [27] and the massive complex scalar field in the
Kerr-Sen geometry has been considered in [28].

We apply the Kerr/CFT correspondence to the extremal Kerr-Sen black hole and
should stress that the Kerr-Sen solutions contain an antisymmetric tensor field as well
as a dilaton and a vector field. As we mentioned before, the Kerr-Sen solutions are the
exact solutions to the four-dimensional effective action of heterotic string theory. The
effective action is obtained by compactifiying six of the ten dimensions of string theory
and we have not included any massless fields arising from compactification in the theory.
It seems Kerr-Sen black hole might be considered as a sub-class of black hole solutions
n [21], but we should notice that in all the solutions that have been considered in [21],
there are not absolutely any solutions with antisymmetric tensor fields. In four dimensions,
the antisymmetric tensor field is equivalent to a scalar (axion) and we may expect that
the results (coming from Kerr/CFT correspondence) should not be very different from the
results presented in [21]. However, due to the non-trivial coupling of the antisymmetric
tensor field to the Chern-Simons three form, in this article, we try explicitly to extend
the validity of the conjecture (that the central charge of dual CFT to extremal black hole
comes only from gravitational part and first proposed in [23]) for theories that contain
antisymmetric tensor fields.

The outline of this paper is as follows. In section 2, we first review briefly the Kerr-
Sen black hole and its associated physical quantities. We find the near-horizon geometry of
extremal black hole by using special coordinate transformations as well as the near-horizon
limits of the other non-gravitational fields. We notice a delicate divergence cancellation in
the near-horizon limit of the three-form field strength due to the presence of the Chern-
Simons terms. In section 3, we calculate the different contributions to the central charge of
CFT; from gravitational field, dilaton, gauge field and the antisymmetric tensor field. We
find that there are no contributions to the central charge of the CF'T from non-gravitational
fields. Finally we find the microscopic entropy of extremal Kerr-Sen black hole in the dual
chiral conformal field theory and compare the results with the macroscopic Bekenstein-
Hawking entropy. We conclude in section 4 with a summary of our results.



2 Extremal Kerr-Sen black hole

In this section, we give a brief review of the Kerr-Sen black hole and then study its near-
horizon geometry.
The effective action of heterotic string theory in four dimensions is given by

S = —/d4x\/—det Ge™® <—R + 1—12H2 - G"9,90,® + éF2> (2.1)

where H? = H,,,H""? and F? = FuF* . In (2.1), G, and ® are the metric and the
dilaton field respectively, F,, = d,A, — 0, A, is the field strength for the gauge field A,
associated with a U(1) subgroup of Eg x Eg and

Hywp = 0uBup + 0, By + 0By — i(Aqup + AV Ey + ApFlu) (2.2)
where the last three terms are the gauge Chern-Simons terms. In Kinstein frame, the
Kerr-Sen black hole is given by [24]
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The dilaton and gauge field components are
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and the only non-vanishing component of antisymmetric tensor field is
2mrasinh?(a/2) sin? (0

124 a2 cos2(f) + 2mrsinh?(a/2)
The black hole solution (2.3) has mass M = m cosh?(a/2), charge Q = % sinh o and

angular momentum .J = ma cosh?(a/2). We rewrite the metric as

oM i
ds? = - (1 - p;") di* + p? (% +d62>
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- 27“a sin? Odtdep + {f(f +0)+a* + L;m} sin? fd¢? (2.8)
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where p? = #(7 + o) + a® cos? § and A = #(7 + o) — 2M7 + a®. The parameter g is related
tom =M — % and a in (2.3) by ¢ = 2msinh?(a/2) = Q?/M. The dilaton , gauge field
and the antisymmetric tensor field are given by

F(F + 0) + a® cos? §

¢=-l 72 + a2 cos? 0 (29)
A = NEJQ (2.10)
A(;; _ —QﬁfgasiDQH (2.11)
By = fga;#w (2.12)

We notice that for special value of ¢ = 0, the metric (2.8) reduces to Kerr black hole.

Moreover, we should note that the presence of antisymmetric tensor field B, makes
the action (2.1) quite different from the actions considered in [21, 23]. Although the Kerr-
Sen black hole solution (2.8) looks to be included in the class of general extremal black hole
solutions (which considered in [21]), but we should mention that in all solutions considered
n [21], there are no antisymmetric tensor fields. The antisymmetric tensor field may or
may not contribute to the central charge of the dual CFT and this is the main question
that we try to address in this paper.

Moreover, we note that the metric (2.8) is quite distinct from Kerr metric; it can not be
obtained simply by a shift in coordinate r from Kerr metric, hence we can not tell a priori
about the outcome of applying Kerr/CFT correspondence to the rotating black hole solu-
tion (2.8) with the dilaton, gauge field and especially the non-trivial antisymmetric tensor
field (2.12). On the other hand, for a = 0, the Kerr-Sen black hole reduces to Gibbons-
Maeda-Garfinkle-Horowitz-Strominger charged black hole of heterotic string theory in the
strong deflection limit. In this limit, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger
charged black hole can be used to study the gravitational lensing when light passes close
to the black hole. The event horizon of black hole (2.8) is

1
rH:M—§+§\/(2M—g)2—4a2. (2.13)

To avoid any naked singularity, we should impose
2 1.
| T M” = 5@ (2.14)

It is obvious that the extremal black hole satisfies the upper bound of above inequality.
The angular velocity at the horizon and Hawking temperature of black hole (2.3) are

= m(m + vm? — a?)(1 + cosh(a)) (2:15)
Ty = m’ o’ (2.16)

2rm(m 4+ vm? — a?)(1 + cosh(a))



respectively. For the black hole in the form (2.8), the corresponding angular velocity at
horizon, Hawking temperature and entropy are

J

Qg = (2.17)

M(2M? — Q2 + \/(2M?2 — Q%)2 — 4.J?)

2M?2 — Q%)% — 4.J2
Ty = \/( O (2.18)
4 M (2M? — Q2 + /(2M?2 — Q%)2 — 4J2)

QZ Q2 J2
S =2rM(M — —— M- —=)2-—). 2.19
We notice in the extremal limit where J = M? — %QQ, the angular velocity and Hawking
temperature reduce to ﬁ and 0, respectively and the entropy (2.19) reduces simply to

S = 2xJ; independent of the mass of black hole.
To find the near-horizon limit of the extremal black hole, we change the coordinates
according to the following transformations

(-9 (12) -
P— %t (2.21)
5= 6+t/2 (222)

where the scaling parameter A approaches zero. The black hole metric (2.8) changes to the
near-horizon metric

ds® =

(2M — o) {%QSin29+M(1 + cos? 9)}2 (—dt2 +dy2>
2M (1 + cos? ) + osin® 0 Y2
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4M? sin? @ dt\?
+ do + — . 2.24
(30sin?6 + M(1 + cos20))? < ¢ y) (2:24)

The near-horizon metric definitely is not asymptotically flat. The near-horizon dilaton

field is
(2M? — Q*)(1 + cos? )

P =1 2.25
HQQSin29+2M2(1+COSQH) (225)
and the near-horizon U(1) field strength is given by
2v/2Q(2M? — Q?) sin? 0
F= fQQ( Q)sin’0 g
y2(Q?sin” 0 + 2M?2(1 + cos? 0))
2M?(2M? — Q%) sin(2
SV2M( Q)OO 10 p i+ do A db). (2.26)
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Equation (2.26) shows that near-horizon gauge field is

B 2v2Q(2M? — Q?)sin? 6 at
4= _(QQSin29+2M2(1+C0829)) <d¢+ y> . (2.27)

In the near-horizon limit, the three-form field strength H,,,, is

H= {H% - iH’dé?} Adt A de (2.28)

where

() = 2(2M? — Q2)%2Q%sin* 0
~ {Q2sin? 0 4 2M2(1 4 cos20)}2’
To get this result in the limit of A — 0, the contribution of gauge Chern-Simons terms in the

(2.29)

three-form field strength (2.2) is very crucial. In the near-horizon limit, both antisymmet-
ric tensor field and Chern-Simons terms contributions to the three-form field strength (2.2)
diverge. These two divergences exactly cancel each other, hence we obtain the finite re-
sult (2.28) for the three-form field strength near the horizon. We can introduce the new
antisymmetric tensor field B by

0
B— -1y n g (2.30)
Yy
such that
H =dB. (2.31)
To cover the whole near-horizon geometry, we use the global coordinates
_ ! (2.32)
Y cos(T)V1+r2+r .
t = ysin(r)v1+r? (2.33)
cos(T) + rsin(7) )
b= (1 +sin(7)V1 4 r? (2.34)
so the global near-horizon gauge field and the metric are
20/2Q(2M? — Q?)sin” 0
A=— do +rd 2.35
(Q?sin® @ + 2M2(1 + cos? 9))( @+ rdr) (2:35)
and
2 2 2 1 2 2 2 2y 7.2 dr? 2
ds® = ¢ M*(1 + cos 9)—|—Z(—Q sin® 0 — 4oM cos*0) 3 < —(1 + r*)dr +1+ 5 +di"+
T
4M?sin’ 0
+ do +rdr)? } . 2.36
(30sin? 60 + M(1 + cos? 9))2( 4 ™) } (2:36)
Moreover, the near-horizon three-form field strength components are
H:p =H (2.37)
H.g, = cos(T)V1+r?H (2.38)
sin(r)
H.pg = —=H 2.39
Tro \/14_—7”2 ( )
B rsin(t)  ,
Hyg, = \/1—1-—7°2H (2.40)



where H is given in (2.29). In the case of vanishing g, the metric becomes the near-horizon
geometry of the Kerr solution, as in [1, 29]. For a fixed 6, the near-horizon geometry is
a quotient of warped AdSs which the quotient arises from identification of ¢ coordinate.
The isometry group of the geometry is SL(2, R) x U(1), where U(1) is generated by the
Killing vector —0,, and SL(2, R) is generated by three Killing vectors,

r 2sinT
Ji = 2sinT——=0; — 2cos TV 1+ 120, + ——0, 2.41
: Ve VIt % 24y
r 2cosT
Jo = —2cos T———0. — 2sin7V/1 + 120, — —— 2.42
2 Vitr2 ' RV i ( )
Jy = 20, (2.43)

3 Microscopic entropy in dual CFT

We recall that asymptotic symmetry group of a spacetime is the group of allowed symme-
tries that obey the boundary conditions. As a result, the definition of the charge associated
with a symmetry depends both on the action as well as boundary conditions. Hence, to
compute the charges associated with asymptotic symmetry group of Kerr-Sen solution,
we should consider all possible contributions from all different fields in the action (2.1).
Asymptotic symmetries of the action (2.1) include diffeomorphisms & such that

0¢® = LcP (3.1)
0¢Ay = LAy (3.2)
5£guu = ﬁgguu (33)
0eBuy = LB (3.4)
as well as the following gauge transformations A and W for A, and By, respectively,
onA, = O, A (3.5)
B, = 0,¥, — 0,V,. (3.6)

In equations (3.1)—(3.4), the Lie derivatives of dilaton, gauge field, metric and antisym-
metric tensor field B) are

LD = £, VD (3.7)
LeAy = & Fu + Vu(ALY) (3.8)
‘Cfg,ul/ = v,ugzx + szé}t (3.9)

LeBuy = Buy0u” + Bp0u” + £°0,B,,. (3.10)

Hence, there are four contributions to the associated charge of asymptotic symmetry
group of Kerr-Sen solution. The contributions come from gravitational tensor, dilaton,
U(1) gauge field and antisymmetric tensor field B,,,. So we have

1
Qeaw = g /8E <k‘§[h;g] + k2 [h, ¢5 9, ®) + kLA [hyas g, A] + kL g [I, b;g,B]) (3.11)



where h,a,b and ¢ mean the infinitesimal variations of g, A, B and ® fields, respectively,
and 0X. is the boundary of a spatial slice. We should note, thanks to equation (2.31), there
is no contribution to the charge (3.11) from Chern-Simons terms. The gravitational and
dilaton contribution two-forms k:g [h; g] and kg’ [h, ¢; g, @] are given by [30-32]

k‘g[h; gl = —5Qg + QgC +ic®[h] — Eg[L¢g, h] (3.12)
kE[h, 19, @] = —icOg (3.13)

where @g = *(¢d®), O[h] = *{(D’hag — g" Dohyy)dz®} and
E;[Lcg, h] = % { %hm(mgﬁ + D¢ dx™ A dxﬁ} (3.14)
and QZ is the Koumar two-form
QZ = % * (Dy& — D&y )dat A dx”. (3.15)

The last two terms in equation (3.11) are contributions of one-form gauge field A and
two-form B field to the charge. In general for a p-form P with the associated (p + 1)-form
field strength R, the contribution is given by [32]

K nlh.p; g, P) = —6QE 1 + Qi sr — icOF — EL[Lc P + dI1, p] (3.16)
where

OF = pAxR (3.17)

1 ps
EE[ECP + dH,p] = % {mpupl“'pﬁ—l (ﬁCP + dn)ﬁl ppildxu A dl’y} (318)

and the two-form Qg 1 is
Q1 = (icP +1I) A <R. (3.19)

The explicit expressions for the contributions to the charge (3.11) from gravity, dilaton and
Maxwell field are given in the appendix. We find the contribution of antisymmetric tensor

field as

1
k?,\l/[h’ b; g, B] = E {CA(EuupﬁbAa + e;wpabB)\ + euupAbaﬁ)Hul}p} dz® A dxﬁ

1 1 1 1

=g {55’\bw\H’“’p+ <§§ABM + \1@) <5HWP n 5hHWP) } da¥ A da®
1 17 (63 (oa

—i—ge“ o0 (LB +dV),qdx? A dxf. (3.20)

We choose the proper boundary condition for the near-horizon metric as the same as one
in [1]. Moreover, we choose the boundary conditions for the U(1) gauge field

ay ~ O(r,1/r* 1,1/r) (3.21)



and for the dilaton as

6~ O(1) (3.22)

where the coordinates are (7,7,0,¢). For the antisymmetric tensor field, we choose

01/r% 1/r 1
0 1/r21/r
b ~ O 3.23
. 0 1/r (3:23)
0

to make sure that the conserved charges of the theory remain finite. We can show that the
near-horizon metric has a class of commuting diffeomorphisms, labeled by n = 0, £1, £2, - - -

(n = —€ (D, +inrd,). (3.24)
This diffeomorphism generates a Virasoro algebra without any central charge

[Cma Cn] = _i(m - n)Cm-i—n (3.25)

Under the action of diffeomorphism (3.24), the gauge field gets a ¢-component that is
of the order of 1 at infinity. This is in contrast to the boundary condition (3.21). To
restore the boundary condition (3.21), we should perform a gauge transformation with the
gauge function

B 2v/2Q(2M? — Q?)sin?0  _,,
An(0,0) = T (OFem26 5 (L s c028))" ¢ (3.26)

Hence, under a combination of diffeomorphism transformation and gauge transformation,

the gauge field at infinity behaves exactly as it is expected by (3.21). Moreover, the Lie

derivative of the antisymmetric tensor field B at infinity, has the following components

LBy = %e*i(”ﬂ*”“’)n sin(r)H%(0) + O (—12> (3.27)
T
1 . 1
LcBry = ge TR sin(r)H (0)r + O <;> (3.28)

that are not in agreement with the boundary condition (3.23). The only other non-zero
component of LB at infinity, is

—i(7m/2410) ) o3 1 1
LBy, e nsin(r)H(0) ( >

— — 2
1+ cos(T) 2t © ré (3.29)

which behaves smoother than what is supposed to be. To find agreement with the bound-
ary condition (3.23), we do a compensational transformation (3.6) with the following
VU, function,

(U )n = %ine_m‘pHZ(ﬂ) cos(T) (3.30)
(Ty)n = %n267m‘p7{2(9)r cos(T). (3.31)



So, we find a combination of diffeomorphism transformation and (3.6) yields an antisym-
metric tensor field that behaves at infinity, in agreement with the imposed boundary con-
dition (3.23).

The charge (3.11) generates the symmetry (¢, A, ¥),, and the algebra of the asymptotic
symmetric group is given by the Dirac bracket algebra of these charges

{Qcaw, @z g gtp.B. = (65 + 65 + 05)Qcaw (3.32)
1 ®
= 5 | (Hlccoal + #1c0.£00:9.0

+kANCeg, LoA+dN; g, A] + kB y[Leg, L:B + dW: g, B]) .

Taking the background geometry § and fields ®, A and B by (2.24), (2.25), (2.27) and (2.30),
we obtain

{Qcaw, Qea 3tp.B. = Queaw), @i T gr /az (kg[ﬁgﬁﬁ] +kE[L:0, L:D; 9, ]
o+ kEAlLeg £2A + ADsg, A] + KBy [£:9, £eB + a¥; 3, B]) . (3.33)

A straightforward and lengthy calculation shows that the algebra of the asymptotic sym-
metry group is a Virasoro algebra generated by (¢, A, ¥),, with the central charge

c=cg+ce+catecp. (3.34)

The four contributions to the central charge are generated by the last four central terms
in (3.33), respectively. Moreover, we find that the chosen boundary conditions for the
metric tensor (as the same boundary condition in [1]), dilaton (given by (3.22)) , gauge field
(given by (3.21)) and antisymmetric tensor field (given by (3.23)), keep all the conserved
charges as well as the central charges completely finite. Explicitly, we find that

/a KL [£g 3] = ST (m® = m)d (3.35)
kg [cgng,cgn@;g,cﬁ] =0 (3.36)

)3
/82 ke anlLe 0, Le A+ dA; g, Al =0 (3.37)
/8E kS woalLe 8, Le B+ d¥;§,B] =0 (3.38)

which yield

cg = 12J (3.39)
cp =0 (3.40)
ca=0 (3.41)
cg = (3.42)

,10,



These results explicitly show that the non-gravitational fields (including the antisymmetric
tensor field) do not contribute to the central charge of the dual CFT. Replacing the Dirac
brackets by commutators yields a quantum Virasoro algebra with the central charge

c=12J (3.43)

for the dual chiral CFT corresponding to Kerr-Sen black hole (2.8). To find the entropy
of dual chiral CFT, we need to find Frolov-Thorne temperature [33]. A straightforward
calculation shows

1
Tprr = —. (3.44)
2
Finally, we obtain the microscopic entropy in dual chiral CFT by using the Cardy rela-
tion, as
2

This microscopic result for the entropy is exactly the same as macroscopic entropy of black
hole (2.19) in the extremal limit.

Although Kerr-Sen black hole in the limit of @ — 0 reduces to Gibbons-Maeda-
Garfinkle-Horowitz-Strominger charged black hole, but Kerr/CFT correspondence fails for
Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole. This is quite reasonable since
in derivation of microscopic entropy, we implicitly assumed that the angular velocity of the
horizon is not zero.

4 Concluding remarks

In this paper, we considered the class of extremal Kerr-Sen black holes in the low energy
limit of heterotic string theory. We found the near-horizon metric of the black hole, as
well as the near-horizon limits of the other non-gravitational fields of the theory by taking
the near-horizon procedure. We found that the contribution of the Chern-Simons terms
to the three-form field strength of the theory is very crucial. In fact, the contribution
of the antisymmetric tensor field to the three-form field strength in near-horizon limit, is
divergent. Moreover, the contribution of the Chern-Simons terms to the three-form field
strength in near-horizon limit, also is divergent. However, these two divergences cancel
out exactly when we consider both contributions to the three-form field strength. We
found an important result that states near the horizon (which has the topology of warped
AdS3), the three-form field strength depends explicitly on a new antisymmetric tensor field,
and not to the Maxwell gauge filed. By choosing the proper boundary conditions for the
gravitational field, dilaton, gauge field and the antisymmetric tensor field, we found the
diffeomorphisms that generate Virasoro algebra without any central charge. The generator
of diffeomorphisms which is a conserved charge, can be used to construct an algebra under
Dirac brackets. This algebra is the same as diffeomorphism algebra but just with some
extra central terms. These central terms, in general contribute to the the central charge
of the Virasoro algebra. We showed that the only non-zero contribution to the central
charge of the dual conformal field theory comes from gravitational field. So, we extended
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the validity of conjecture (that the central charges from the non-gravitational fields van-
ish) to theories that include the antisymmetric tensor fields. The central charge together
with Frolov-Thorne temperature enable us to find the microscopic entropy of the extremal
Kerr-Sen black hole in dual chiral CF'T. The microscopic entropy is exactly the same as
macroscopic Bekenstein-Hawking entropy of the extremal black hole. Our work provides
further supportive evidence in favor of a Kerr/CFT correspondence in the low energy limit
of heterotic string theory that contains three non-gravitational fields.
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A Different two-form contributions to the central charge
The contribution to the charge (3.11) from the gravitational tensor is
klhi gl = —le,wpa {C”Vph — OV + VIR + lhVUgP
4 2
— KAV P + %W(vm + vAgP)} dat A da” . (A1)

The Maxwell contribution is given by

1 1
kéA[h7a;g7A] = geaﬁuy{ <—§th/ + 2Fﬂph; — 5Fﬂy> (CUAO + A)

—F"(%a, — 2F"”C”ag}dx°‘ A da?
1, o
—gegﬁaﬂ(ﬁgfll, + 9, A)dz® A daP. (A.2)

We should note that the last two terms in (A.1) as well as in (A.2) vanish for an exact
Killing vector and an exact symmetry, respectively. Finally, the dilaton contribution is

1 v (oa
kEh, ¢ g, @] = = 5 06oAC Oy @z A da?. (A.3)
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